Clustering over‐dispersed data with mixed feature types
نویسندگان
چکیده
منابع مشابه
Fuzzy clustering algorithms for mixed feature variables
This paper presents fuzzy clustering algorithms for mixed features of symbolic and fuzzy data. El-Sonbaty and Ismail proposed fuzzy c-means (FCM) clustering for symbolic data and Hathaway et al. proposed FCM for fuzzy data. In this paper we give a modi3ed dissimilarity measure for symbolic and fuzzy data and then give FCM clustering algorithms for these mixed data types. Numerical examples and ...
متن کاملMixAll: Clustering Mixed data with Missing Values
The Clustering project is a part of the STK++ library (Iovleff 2012) that can be accessed from R (R Development Core Team 2013) using the MixAll package. It is possible to cluster Gaussian, gamma, categorical, Poisson, kernel mixture models or a combination of these models in case of mixed data. Moreover, if there is missing values in the original data set, these missing values will be imputed ...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملDealing with overdispersed count data in applied ecology
ing ecological complexity by identifying key biological processes, and the factors that affect them, is important when solving applied ecological problems (e.g. Hilborn & Mangel 1997; McPherson & DeStefano 2003; Clark 2007), as the effectiveness of a management action is likely to depend upon the processes that dominate a system (Walters 1986). Hence, it is important that ecologists should be a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Analysis and Data Mining: The ASA Data Science Journal
سال: 2018
ISSN: 1932-1864,1932-1872
DOI: 10.1002/sam.11369